对于高斯符號,有如下性质。
按定义:
[
x
]
≤
x
<
[
x
]
+
1
{\displaystyle [x]\leq x<[x]+1}
当且仅当x为整数时取等号。
设x和n为正整数,则:
[
n
x
]
≥
n
x
−
x
−
1
x
{\displaystyle \left[{\frac {n}{x}}\right]\geq {\frac {n}{x}}-{\frac {x-1}{x}}}
当n为正整数时,有:
[
x
n
]
=
x
−
x
mod
n
n
,
{\displaystyle \left\lbrack {\frac {x}{n}}\right\rbrack ={\frac {x-x{\bmod {n}}}{n}},}
其中
x
mod
n
{\displaystyle x{\bmod {n}}}
表示
x
{\displaystyle x}
除以
n
{\displaystyle n}
的餘數。
对任意的整数k和任意实数x,
[
k
+
x
]
=
k
+
[
x
]
.
{\displaystyle [{k+x}]=k+[x].}
一般的數值修約規則可以表述为将x映射到floor(x + 0.5);
高斯符號不是连续函数,但是上半连续的。作为一个分段的常数函数,在其导数有定义的地方,高斯符號导数为零。
设x为一个实数,n为整数,则由定义,n ≤ x当且仅当n ≤ floor(x)。
當x是正數時,有:
[
2
x
]
−
2
[
x
]
⩽
1
{\displaystyle \left\lbrack 2x\right\rbrack -2\left\lbrack x\right\rbrack \leqslant 1}
用高斯符號可以写出若干个素数公式,但没有什么实际价值,見§ 質數公式。
对于非整数的x,高斯符號有如下的傅里叶级数展开:
[
x
]
=
x
−
1
2
+
1
π
∑
k
=
1
∞
sin
(
2
π
k
x
)
k
.
{\displaystyle [x]=x-{\frac {1}{2}}+{\frac {1}{\pi }}\sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}.}
根据Beatty定理,每个正无理数都可以通过高斯符號制造出一个整数集的分划。
最后,对于每个正整数k,其在 p 进制下的表示有
[
log
p
(
k
)
]
+
1
{\displaystyle [\log _{p}(k)]+1}
个数位。
函數間之關係
编辑
由上下取整函數的定義,可見
⌊
x
⌋
≤
⌈
x
⌉
,
{\displaystyle \lfloor x\rfloor \leq \lceil x\rceil ,}
等號當且僅當
x
{\displaystyle x}
為整數,即
⌈
x
⌉
−
⌊
x
⌋
=
{
0
,
若
x
∈
Z
,
1
,
若
x
∉
Z
.
{\displaystyle \lceil x\rceil -\lfloor x\rfloor ={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\1,&{\text{ 若 }}\ x\not \in \mathbb {Z} .\end{cases}}}
實際上,上取整與下取整函數作用於整數
n
{\displaystyle n}
,效果等同恆等函數:
⌊
n
⌋
=
⌈
n
⌉
=
n
.
{\displaystyle \lfloor n\rfloor =\lceil n\rceil =n.}
自變量加負號,相當於將上取整與下取整互換,外面再加負號,即:
⌊
x
⌋
+
⌈
−
x
⌉
=
0
,
−
⌊
x
⌋
=
⌈
−
x
⌉
,
−
⌈
x
⌉
=
⌊
−
x
⌋
.
{\displaystyle {\begin{aligned}\lfloor x\rfloor +\lceil -x\rceil &=0,\\-\lfloor x\rfloor &=\lceil -x\rceil ,\\-\lceil x\rceil &=\lfloor -x\rfloor .\end{aligned}}}
且:
⌊
x
⌋
+
⌊
−
x
⌋
=
{
0
,
若
x
∈
Z
,
−
1
,
若
x
∉
Z
,
{\displaystyle \lfloor x\rfloor +\lfloor -x\rfloor ={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\-1,&{\text{ 若 }}\ x\not \in \mathbb {Z} ,\end{cases}}}
⌈
x
⌉
+
⌈
−
x
⌉
=
{
0
,
若
x
∈
Z
,
1
,
若
x
∉
Z
.
{\displaystyle \lceil x\rceil +\lceil -x\rceil ={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\1,&{\text{ 若 }}\ x\not \in \mathbb {Z} .\end{cases}}}
至於小數部分
{
x
}
=
x
−
⌊
x
⌋
{\displaystyle \{x\}=x-\lfloor x\rfloor }
,自變量取相反數會使小數部分變成關於1的「補數」:
{
x
}
+
{
−
x
}
=
{
0
,
若
x
∈
Z
,
1
,
若
x
∉
Z
.
{\displaystyle \{x\}+\{-x\}={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\1,&{\text{ 若 }}\ x\not \in \mathbb {Z} .\end{cases}}}
上取整、下取整、小數部分皆為冪等函數,即函數疊代兩次的結果等於自身:
⌊
⌊
x
⌋
⌋
=
⌊
x
⌋
,
⌈
⌈
x
⌉
⌉
=
⌈
x
⌉
,
{
{
x
}
}
=
{
x
}
.
{\displaystyle {\begin{aligned}{\Big \lfloor }\lfloor x\rfloor {\Big \rfloor }&=\lfloor x\rfloor ,\\{\Big \lceil }\lceil x\rceil {\Big \rceil }&=\lceil x\rceil ,\\{\Big \{}\{x\}{\Big \}}&=\{x\}.\end{aligned}}}
而多個上取整與下取整依次疊代的效果,相當於最內層一個:
⌊
⌈
x
⌉
⌋
=
⌈
x
⌉
,
⌈
⌊
x
⌋
⌉
=
⌊
x
⌋
,
{\displaystyle {\begin{aligned}{\Big \lfloor }\lceil x\rceil {\Big \rfloor }&=\lceil x\rceil ,\\{\Big \lceil }\lfloor x\rfloor {\Big \rceil }&=\lfloor x\rfloor ,\end{aligned}}}
因為外層取整函數實際衹作用在整數上,不帶來變化。
商
编辑
若
m
{\displaystyle m}
和
n
{\displaystyle n}
為正整數,且
n
≠
0
{\displaystyle n\neq 0}
,則
0
≤
{
m
n
}
≤
1
−
1
|
n
|
.
{\displaystyle 0\leq \left\{{\frac {m}{n}}\right\}\leq 1-{\frac {1}{|n|}}.}
若
n
{\displaystyle n}
為正整數,則[3]
⌊
x
+
m
n
⌋
=
⌊
⌊
x
⌋
+
m
n
⌋
,
{\displaystyle \left\lfloor {\frac {x+m}{n}}\right\rfloor =\left\lfloor {\frac {\lfloor x\rfloor +m}{n}}\right\rfloor ,}
⌈
x
+
m
n
⌉
=
⌈
⌈
x
⌉
+
m
n
⌉
.
{\displaystyle \left\lceil {\frac {x+m}{n}}\right\rceil =\left\lceil {\frac {\lceil x\rceil +m}{n}}\right\rceil .}
若
m
{\displaystyle m}
為正數,則[4]
n
=
⌈
n
m
⌉
+
⌈
n
−
1
m
⌉
+
⋯
+
⌈
n
−
m
+
1
m
⌉
,
{\displaystyle n=\left\lceil {\frac {n}{m}}\right\rceil +\left\lceil {\frac {n-1}{m}}\right\rceil +\dots +\left\lceil {\frac {n-m+1}{m}}\right\rceil ,}
n
=
⌊
n
m
⌋
+
⌊
n
+
1
m
⌋
+
⋯
+
⌊
n
+
m
−
1
m
⌋
.
{\displaystyle n=\left\lfloor {\frac {n}{m}}\right\rfloor +\left\lfloor {\frac {n+1}{m}}\right\rfloor +\dots +\left\lfloor {\frac {n+m-1}{m}}\right\rfloor .}
代
m
=
2
{\displaystyle m=2}
,上式推出:
n
=
⌊
n
2
⌋
+
⌈
n
2
⌉
.
{\displaystyle n=\left\lfloor {\frac {n}{2}}\right\rfloor +\left\lceil {\frac {n}{2}}\right\rceil .}
更一般地,對正整數
m
{\displaystyle m}
,有埃爾米特恆等式(英语:Hermite's identity):[5]
⌈
m
x
⌉
=
⌈
x
⌉
+
⌈
x
−
1
m
⌉
+
⋯
+
⌈
x
−
m
−
1
m
⌉
,
{\displaystyle \lceil mx\rceil =\left\lceil x\right\rceil +\left\lceil x-{\frac {1}{m}}\right\rceil +\dots +\left\lceil x-{\frac {m-1}{m}}\right\rceil ,}
⌊
m
x
⌋
=
⌊
x
⌋
+
⌊
x
+
1
m
⌋
+
⋯
+
⌊
x
+
m
−
1
m
⌋
.
{\displaystyle \lfloor mx\rfloor =\left\lfloor x\right\rfloor +\left\lfloor x+{\frac {1}{m}}\right\rfloor +\dots +\left\lfloor x+{\frac {m-1}{m}}\right\rfloor .}
對於正整數
m
{\displaystyle m}
,以下兩式可將上下取整函數互相轉化:[6]
⌈
n
m
⌉
=
⌊
n
+
m
−
1
m
⌋
=
⌊
n
−
1
m
⌋
+
1
,
{\displaystyle \left\lceil {\frac {n}{m}}\right\rceil =\left\lfloor {\frac {n+m-1}{m}}\right\rfloor =\left\lfloor {\frac {n-1}{m}}\right\rfloor +1,}
⌊
n
m
⌋
=
⌈
n
−
m
+
1
m
⌉
=
⌈
n
+
1
m
⌉
−
1.
{\displaystyle \left\lfloor {\frac {n}{m}}\right\rfloor =\left\lceil {\frac {n-m+1}{m}}\right\rceil =\left\lceil {\frac {n+1}{m}}\right\rceil -1.}
對任意正整數
m
{\displaystyle m}
和
n
{\displaystyle n}
,有:[7]
∑
k
=
1
n
−
1
⌊
k
m
n
⌋
=
(
m
−
1
)
(
n
−
1
)
+
gcd
(
m
,
n
)
−
1
2
,
{\displaystyle \sum _{k=1}^{n-1}\left\lfloor {\frac {km}{n}}\right\rfloor ={\frac {(m-1)(n-1)+\gcd(m,n)-1}{2}},}
作為特例,當
m
{\displaystyle m}
和
n
{\displaystyle n}
互質時,上式簡化為
∑
k
=
1
n
−
1
⌊
k
m
n
⌋
=
1
2
(
m
−
1
)
(
n
−
1
)
.
{\displaystyle \sum _{k=1}^{n-1}\left\lfloor {\frac {km}{n}}\right\rfloor ={\frac {1}{2}}(m-1)(n-1).}
此等式可以幾何方式證明。又由於右式關於
m
{\displaystyle m}
、
n
{\displaystyle n}
對稱,可得
⌊
m
n
⌋
+
⌊
2
m
n
⌋
+
⋯
+
⌊
(
n
−
1
)
m
n
⌋
=
⌊
n
m
⌋
+
⌊
2
n
m
⌋
+
⋯
+
⌊
(
m
−
1
)
n
m
⌋
.
{\displaystyle \left\lfloor {\frac {m}{n}}\right\rfloor +\left\lfloor {\frac {2m}{n}}\right\rfloor +\dots +\left\lfloor {\frac {(n-1)m}{n}}\right\rfloor =\left\lfloor {\frac {n}{m}}\right\rfloor +\left\lfloor {\frac {2n}{m}}\right\rfloor +\dots +\left\lfloor {\frac {(m-1)n}{m}}\right\rfloor .}
更一般地,對正整數
m
,
n
{\displaystyle m,n}
,有
⌊
x
n
⌋
+
⌊
m
+
x
n
⌋
+
⌊
2
m
+
x
n
⌋
+
⋯
+
⌊
(
n
−
1
)
m
+
x
n
⌋
=
⌊
x
m
⌋
+
⌊
n
+
x
m
⌋
+
⌊
2
n
+
x
m
⌋
+
⋯
+
⌊
(
m
−
1
)
n
+
x
m
⌋
.
{\displaystyle {\begin{aligned}&\left\lfloor {\frac {x}{n}}\right\rfloor +\left\lfloor {\frac {m+x}{n}}\right\rfloor +\left\lfloor {\frac {2m+x}{n}}\right\rfloor +\dots +\left\lfloor {\frac {(n-1)m+x}{n}}\right\rfloor \\=&\left\lfloor {\frac {x}{m}}\right\rfloor +\left\lfloor {\frac {n+x}{m}}\right\rfloor +\left\lfloor {\frac {2n+x}{m}}\right\rfloor +\cdots +\left\lfloor {\frac {(m-1)n+x}{m}}\right\rfloor .\end{aligned}}}
上式算是一種「互反律」(reciprocity law)[7],與§ 二次互反律有關。